Intrinsic quenching and stable crack propagation in hexagonal boron nitride

  • 1.

    Ritchie, RO Conflicts between strength and tenacity. Nat. Mother. ten, 817-822 (2011).

    ADS CAS Google Scholar Article

  • 2.

    Ritchie, RO Mechanisms of Fatigue Crack Propagation in Metals, Ceramics, and Composites: Role of Crack Point Shielding. Mater. Sci. Ing. A 103, 15-28 (1988).

    Google Scholar article

  • 3.

    Zhang, P. et al. Toughness at fracture of graphene. Nat. Common. 5, 3782 (2014).

    ADS CAS Google Scholar Article

  • 4.

    Becton, M. & Wang, X. Grain size dependence of mechanical properties in polycrystalline boron nitride: a computer study. Phys. Chem. Chem. Physical. 17, 21894-21901 (2015).

    Google Scholar CAS Article

  • 5.

    Cammarata, RC Effects of surface and interface stresses in thin films. Program. Surf. Sci. 46, 1-38 (1994).

    ADS CAS Google Scholar Article

  • 6.

    Wang, SS et al. Atomically Sharp Crack Points in Single Layer MoS2 and their toughness increased by shortcomings defects. ACS Nano ten, 9831-9839 (2016).

    Google Scholar CAS Article

  • 7.

    Lee, C., Wei, XD, Kysar, JW & Hone, J. Measurement of elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008).

    ADS CAS Google Scholar Article

  • 8.

    Li, LH et al. Dielectric shielding in atomically thin boron nitride nanosheets. Nano Lett. 15, 218-223 (2015).

    ADS CAS Google Scholar Article

  • 9.

    Akinwande, D. et al. A review of the mechanics and mechanical properties of 2D materials — graphene and beyond. Extreme mechanic. Lett. 13, 42-77 (2017).

    Google Scholar article

  • ten.

    Falin, A. et al. Mechanical properties of atomically thin boron nitride and role of interlayer interactions. Nat. Common. 8, 15815 (2017).

    ADS CAS Google Scholar Article

  • 11.

    Kumar, R. & Parashar, A. Improving the fracture toughness of h-BN monolayers via hydrogen passivation of a crack edge. Nanotechnology 28, 165702 (2017).

    Google Scholar ADS Article

  • 12.

    Tabarraei, A. & Wang, X. A study of molecular dynamics of nanofracture in monolayer boron nitride. Mater. Sci. Ing. A 641, 225-230 (2015).

    Google Scholar CAS Article

  • 13.

    Rakib, T., Mojumder, S., Das, S., Saha, S. & Motalab, M. Graphene and its elemental analogue: a view of the molecular dynamics of the fracture phenomenon. Phys. Rev. B 515, 67-74 (2017).

    Google Scholar CAS

  • 14.

    Ahmed, T., Procak, A., Hao, T. & Hossain, ZM Strong anisotropy of strength and toughness in defective hexagonal boron nitride. Phys. Rev. B 99, 134105 (2019).

    ADS CAS Google Scholar Article

  • 15.

    Yang, YC et al. Fragile 2D MoSe fracture2. Av. Mother. 29, 1604201 (2017).

    Google Scholar article

  • 16.

    McMeeking, RM & Evans, AG Transformation-quenching mechanics in brittle materials. Jam. Ceram. Share. 65, 242-246 (1982).

    Google Scholar article

  • 17.

    Budiansky, B., Hutchinson, JW & Lambropoulos, JC Theory of the quenching continuum by dilating ceramic transformation. Int. J. Solids Struct. 19, 337-355 (1983).

    Google Scholar article

  • 18.

    Levitas, VI & Samani, K. Effects of size and mechanics in surface-induced fusion of nanoparticles. Nat. Common. 2, 284 (2011).

    Google Scholar ADS Article

  • 19.

    Diao, JK, Gall, K. & Dunn, ML Surface stress-induced phase transformation in metallic nanowires. Nat. Mother. 2, 656-660 (2003).

    ADS CAS Google Scholar Article

  • 20.

    Shenoy, VB, Reddy, CD, Ramasubramaniam, A. & Zhang, YW Edge stress-induced deformation of graphene sheets and nanoribbons. Phys. Rev. Lett. 101, 245501 (2008).

    ADS CAS Google Scholar Article

  • 21.

    Lu, GY et al. Synthesis of heterostructure in the single-layer plane of graphene and hexagonal boron nitride of high quality on Cu-Ni alloy. Av. Sci. 4, 1700076 (2017).

    Google Scholar article

  • 22.

    Lu, GY et al. Synthesis of large hexagonal monocrystalline grains of boron nitride on Cu-Ni alloy. Nat. Common. 6, 6160 (2015).

    ADS CAS Google Scholar Article

  • 23.

    Song, L. et al. Large-scale growth and characterization of hexagonal atomic layers of boron nitride. Nano Lett. ten, 3209-3215 (2010).

    ADS CAS Google Scholar Article

  • 24.

    Deng, JK, Fampiou, I., Liu, JZ, Ramasubramaniam, A. & Medhekar, NV Edge stresses of non-stoichiometric edges in two-dimensional crystals. Appl. Phys. Lett. 100, 251906 (2012).

    Google Scholar ADS Article

  • 25.

    Ly, TH, Zhao, J., Cichocka, MO, Li, LJ & Lee, YH Dynamic observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nat. Common. 8, 14116 (2017).

    ADS CAS Google Scholar Article

  • 26.

    Yankowitz, M. et al. Dynamic adjustment of the band structure of graphene moiré superlattices with pressure. Nature 557, 404-408 (2018).

    ADS CAS Google Scholar Article

  • 27.

    Levendorf, MP et al. Lateral heterostructures of graphene and boron nitride for atomically thin circuits. Nature 488, 627-632 (2012).

    ADS CAS Google Scholar Article

  • 28.

    Liu, Z. et al. Heterostructures in the plane of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnology. 8, 119–124 (2013).

    ADS CAS Google Scholar Article

  • 29.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Check out. 1, 16042 (2016).

    ADS CAS Google Scholar Article

  • 30.

    Hacopian, EF et al. Hardening of graphene by integration of carbon nanotubes. ACS Nano 12, 7901-7910 (2018).

    Google Scholar CAS Article

  • 31.

    Buehler, MJ & Gao, HJ Dynamic instabilities of fractures due to local hyperelasticity at the ends of cracks. Nature 439, 307-310 (2006).

    ADS CAS Google Scholar Article

  • 32.

    Buehler, MJ, Abraham, FF & Gao, HJ Hyperelasticity governs dynamic failure at a critical length scale. Nature 426, 141-146 (2003).

    ADS CAS Google Scholar Article

  • 33.

    Zhu, T. & Li, J. Ultra-tough materials. Program. Mater. Sci. 55, 710-757 (2010).

    Google Scholar article

  • 34.

    Griffith, AA VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. London. A 221, 163-198 (1921).

    Google Scholar ADS Article


  • Source link

    About Mildred B.

    Check Also

    “South Africa has the opportunity to reset its Israel-Pa …

    Two South African groups – one pro Palestine and the other pro Israel – protest …